main content

使用深度学习进行图像处理 -凯发k8网页登录

使用深度神经网络执行图像处理任务,例如去除图像噪声和执行图像到图像的转换(需要 deep learning toolbox™)

深度学习使用神经网络直接从数据中学习有用的特征表示。例如,您可以使用预训练神经网络来识别和去除图像中的噪声等项。

函数

transform batches to augment image data
datastore for use with blocks from blockedimage objects
denoising image datastore
图像数据的数据存储
datastore for extracting random 2-d or 3-d random patches from images or pixel label images
变换数据存储
合并来自多个数据存储的数据
randomly alter color of pixels
randomly select rectangular region in image
create randomized cuboidal cropping window
create rectangular center cropping window
create cuboidal center cropping window
spatial extents of 2-d rectangular region
spatial extents of 3-d cuboidal region
create randomized 2-d affine transformation
create randomized 3-d affine transformation
create output view for warping images
remove image pixels within rectangular region of interest
2-d resize layer
3-d resize layer
resize spatial dimensions of dlarray object
depth to space layer
space to depth layer
rearrange dlarray data from depth dimension into spatial blocks
rearrange spatial blocks of dlarray data along depth dimension
create encoder-decoder network
create network with repeating block structure
create encoder network from pretrained network
create cyclegan generator network for image-to-image translation
create patchgan discriminator network
create pix2pixhd global generator network
add local enhancer network to pix2pixhd generator network
create unsupervised image-to-image translation (unit) generator network
perform inference using unsupervised image-to-image translation (unit) network
denoise image using deep neural network
get image denoising network
get denoising convolutional neural network layers

主题

预处理图像数据以进行深度学习


  • preprocess data with deterministic operations such as normalization or color space conversion, or augment training data with randomized operations such as random cropping or color jitter.

  • (deep learning toolbox)
    learn how to use datastores in deep learning applications.
  • (deep learning toolbox)
    此示例说明如何准备数据存储,以便使用 imagedatastoretransformcombine 函数来训练图像到图像的回归网络。

  • this example shows how you can perform common kinds of randomized image augmentation such as geometric transformations, cropping, and adding noise.

创建用于图像处理应用的神经网络


  • use a pretrained neural network to remove gaussian noise from a grayscale image, or train your own network using predefined layers.

  • you can create and customize deep learning networks that follow a modular pattern with repeating groups of layers, such as u-net and cyclegan.
  • get started with gans for image-to-image translation
    transfer styles and characteristics from one set of images to the scene content of other images by using generative adversarial networks (gans).
  • 预训练的深度神经网络 (deep learning toolbox)
    了解如何下载和使用预训练的卷积神经网络进行分类、迁移学习和特征提取。
  • (deep learning toolbox)
    探索 matlab® 中的所有深度学习层。

matlab 中进行深度学习

  • 在 matlab 中进行深度学习 (deep learning toolbox)
    通过使用卷积神经网络进行分类和回归来探索 matlab 的深度学习能力,包括预训练网络和迁移学习,以及在 gpu、cpu、集群和云上进行训练。
  • semantic segmentation using deep learning (computer vision toolbox)
    this example shows how to segment an image using a semantic segmentation network.
网站地图