使用深度学习进行图像处理 -凯发k8网页登录
使用深度神经网络执行图像处理任务,例如去除图像噪声和执行图像到图像的转换(需要 deep learning toolbox™)
深度学习使用神经网络直接从数据中学习有用的特征表示。例如,您可以使用预训练神经网络来识别和去除图像中的噪声等项。
函数
主题
预处理图像数据以进行深度学习
preprocess data with deterministic operations such as normalization or color space conversion, or augment training data with randomized operations such as random cropping or color jitter.
- (deep learning toolbox)
learn how to use datastores in deep learning applications. - (deep learning toolbox)
此示例说明如何准备数据存储,以便使用imagedatastore
的transform
和combine
函数来训练图像到图像的回归网络。
this example shows how you can perform common kinds of randomized image augmentation such as geometric transformations, cropping, and adding noise.
创建用于图像处理应用的神经网络
use a pretrained neural network to remove gaussian noise from a grayscale image, or train your own network using predefined layers.
you can create and customize deep learning networks that follow a modular pattern with repeating groups of layers, such as u-net and cyclegan.- get started with gans for image-to-image translation
transfer styles and characteristics from one set of images to the scene content of other images by using generative adversarial networks (gans). - 预训练的深度神经网络 (deep learning toolbox)
了解如何下载和使用预训练的卷积神经网络进行分类、迁移学习和特征提取。 - (deep learning toolbox)
探索 matlab® 中的所有深度学习层。
在 matlab 中进行深度学习
- 在 matlab 中进行深度学习 (deep learning toolbox)
通过使用卷积神经网络进行分类和回归来探索 matlab 的深度学习能力,包括预训练网络和迁移学习,以及在 gpu、cpu、集群和云上进行训练。 - semantic segmentation using deep learning (computer vision toolbox)
this example shows how to segment an image using a semantic segmentation network.