preprocess data -凯发k8网页登录
in algorithm design for predictive maintenance, data preprocessing is often necessary to clean the data and convert it into a form from which you can extract condition indicators. you can perform data preprocessing on arrays or tables of measured or simulated data that you manage with predictive maintenance toolbox™ ensemble datastores. for an overview of some common types of data preprocessing, see .
the diagnostic feature designer app lets you perform many preprocessing operations interactively. the processing tools in the app include filtering, time-domain processing, frequency-domain processing, and interpolation. app time-domain processing options include specialized filtering for rotating machinery. for more information on the app, see .
apps
diagnostic feature designer | interactively extract, visualize, and rank features from measured or simulated data for machine diagnostics and prognostics |
functions
topics
use signal-processing techniques to preprocess data, cleaning it and converting it into a form from which you can extract condition indicators. knowledge of your system can help you choose an appropriate preprocessing approach.
follow this workflow for interactively exploring and processing ensemble data, designing and ranking features from that data, and exporting data and selected features, and generating matlab® code.
organize measurements and information for multiple systems into data sets that you can import into the app.
filter and transform data within the app. extract features from the imported and derived signals, and assess feature effectiveness.