main content

从 mdf 文件中读取数据 -凯发k8网页登录

以下示例说明如何从 mdf 文件中读取通道数据。

查看文件详细信息

通过指定文件名,使用 查看 mdf 文件的元数据。

fileinfo = mdfinfo("vehicledata.mf4")
fileinfo = 
  mdfinfo with properties:
   file details
                  name: "vehicledata.mf4"
                  path: "/tmp/bdoc23a_2181783_2332753/tp3fb84b34/vnt-ex94427230/vehicledata.mf4"
                author: ""
            department: ""
               project: ""
               subject: ""
               comment: "example file demonstrating workflows of writing to mdf files."
               version: "4.10"
      initialtimestamp: 2022-01-20 01:22:34.000000000
   creator details
     programidentifier: "matlab"
     creatorvendorname: "the mathworks, inc."
       creatortoolname: "matlab"
    creatortoolversion: "9.12.0.1846952 (r2022a) prerelease update 1"
       creatorusername: ""
        creatorcomment: ""
   file contents
            attachment: [1x7 table]
     channelgroupcount: 2

从 mdf 文件中读取所有数据

从 mdf 文件中读取所有数据的最简单方法是只使用文件名调用 函数。每个时间表表示从对应的通道组读取的数据。

dataall = mdfread("vehicledata.mf4")
dataall=2×1 cell array
    {  751x8 timetable}
    {92033x2 timetable}
dataall{1}
ans=751×8 timetable
      time      enginerpm    brake    throttle    gear    impellertorque    outputtorque    transmissionrpm    vehiclespeed
    ________    _________    _____    ________    ____    ______________    ____________    _______________    ____________
    0 sec          1000        0           60      1          52.919           282.65                0                 0   
    0.04 sec     1383.3        0       59.946      1           101.4           532.63           13.593           0.30047   
    0.08 sec     1685.4        0       59.893      1          150.76           776.41           35.847            0.7924   
    0.12 sec     1907.2        0       59.839      1          193.42           973.15           65.768            1.4538   
    0.16 sec       2062        0       59.785      1          227.02           1117.6           101.53            2.2443   
    0.2 sec      2161.2        0       59.732      1          251.11           1212.8           141.45            3.1268   
    0.24 sec     2221.4        0       59.678      1          267.24           1264.3           183.86            4.0644   
    0.28 sec     2257.2        0       59.624      1          276.35           1271.2           227.25            5.0234   
    0.32 sec     2278.7        0        59.57      1          281.99           1259.5           270.52            5.9798   
    0.36 sec     2292.4        0       59.517      1          283.39             1229           313.08            6.9208   
    0.4 sec      2305.1        0       59.463      1          283.29           1193.4           354.43            7.8348   
    0.44 sec     2317.4        0       59.409      1          282.91           1156.6           394.58            8.7222   
    0.48 sec     2330.5        0       59.356      1          281.84           1112.8           433.27            9.5775   
    0.52 sec     2344.5        0       59.302      1          281.19           1073.1           470.53            10.401   
    0.56 sec     2359.1        0       59.248      1          279.77           1032.9           506.43            11.195   
    0.6 sec      2376.4        0       59.195      1          277.89           993.97           540.92            11.957   
      ⋮
dataall{2}
ans=92033×2 timetable
         time         airflow    fuelrate
    ______________    _______    ________
    0 sec             17.294       1.209 
    0.00056199 sec    17.263       1.209 
    0.0033719 sec     17.112       1.209 
    0.01 sec          16.776      1.1729 
    0.02 sec          16.316      1.1409 
    0.03 sec          15.907      1.1124 
    0.04 sec          15.546      1.0873 
    0.05 sec          15.228      1.0652 
    0.055328 sec      15.075      1.0652 
    0.055328 sec      15.075      1.0652 
    0.055328 sec      15.075      1.0652 
    0.06 sec          14.949      1.0458 
    0.064672 sec      14.832      1.0458 
    0.07 sec          14.707      1.0289 
    0.08 sec          14.497      1.0143 
    0.09 sec          14.317      1.0019 
      ⋮

从所选通道组读取数据

要仅从所选通道组读取数据,请将选项 groupnumber 指定为目标通道组编号。仅从通道组 1 读取数据。

datachangrp1 = mdfread("vehicledata.mf4", groupnumber=1)
datachangrp1 = 1x1 cell array
    {751x8 timetable}
datachangrp1{1}
ans=751×8 timetable
      time      enginerpm    brake    throttle    gear    impellertorque    outputtorque    transmissionrpm    vehiclespeed
    ________    _________    _____    ________    ____    ______________    ____________    _______________    ____________
    0 sec          1000        0           60      1          52.919           282.65                0                 0   
    0.04 sec     1383.3        0       59.946      1           101.4           532.63           13.593           0.30047   
    0.08 sec     1685.4        0       59.893      1          150.76           776.41           35.847            0.7924   
    0.12 sec     1907.2        0       59.839      1          193.42           973.15           65.768            1.4538   
    0.16 sec       2062        0       59.785      1          227.02           1117.6           101.53            2.2443   
    0.2 sec      2161.2        0       59.732      1          251.11           1212.8           141.45            3.1268   
    0.24 sec     2221.4        0       59.678      1          267.24           1264.3           183.86            4.0644   
    0.28 sec     2257.2        0       59.624      1          276.35           1271.2           227.25            5.0234   
    0.32 sec     2278.7        0        59.57      1          281.99           1259.5           270.52            5.9798   
    0.36 sec     2292.4        0       59.517      1          283.39             1229           313.08            6.9208   
    0.4 sec      2305.1        0       59.463      1          283.29           1193.4           354.43            7.8348   
    0.44 sec     2317.4        0       59.409      1          282.91           1156.6           394.58            8.7222   
    0.48 sec     2330.5        0       59.356      1          281.84           1112.8           433.27            9.5775   
    0.52 sec     2344.5        0       59.302      1          281.19           1073.1           470.53            10.401   
    0.56 sec     2359.1        0       59.248      1          279.77           1032.9           506.43            11.195   
    0.6 sec      2376.4        0       59.195      1          277.89           993.97           540.92            11.957   
      ⋮

从匹配指定名称的通道中读取数据

要从完全已知的通道名称中读取数据,请将选项 channel 指定为精确的通道名称。从名为“brake”、“throttle”和“fuelrate”的通道读取数据。

datachanexact = mdfread("vehicledata.mf4", channel=["brake", "throttle", "fuelrate"])
datachanexact=2×1 cell array
    {  751x2 timetable}
    {92033x1 timetable}

请注意,数据以两个时间表的形式返回。这是因为通道“brake”和“throttle”存在于通道组 1 中,而通道“fuelrate”存在于通道组 2 中。

datachanexact{1}
ans=751×2 timetable
      time      brake    throttle
    ________    _____    ________
    0 sec         0           60 
    0.04 sec      0       59.946 
    0.08 sec      0       59.893 
    0.12 sec      0       59.839 
    0.16 sec      0       59.785 
    0.2 sec       0       59.732 
    0.24 sec      0       59.678 
    0.28 sec      0       59.624 
    0.32 sec      0        59.57 
    0.36 sec      0       59.517 
    0.4 sec       0       59.463 
    0.44 sec      0       59.409 
    0.48 sec      0       59.356 
    0.52 sec      0       59.302 
    0.56 sec      0       59.248 
    0.6 sec       0       59.195 
      ⋮
datachanexact{2}
ans=92033×1 timetable
         time         fuelrate
    ______________    ________
    0 sec               1.209 
    0.00056199 sec      1.209 
    0.0033719 sec       1.209 
    0.01 sec           1.1729 
    0.02 sec           1.1409 
    0.03 sec           1.1124 
    0.04 sec           1.0873 
    0.05 sec           1.0652 
    0.055328 sec       1.0652 
    0.055328 sec       1.0652 
    0.055328 sec       1.0652 
    0.06 sec           1.0458 
    0.064672 sec       1.0458 
    0.07 sec           1.0289 
    0.08 sec           1.0143 
    0.09 sec           1.0019 
      ⋮

要从部分已知的通道名称中读取数据,请使用通配符指定选项 channel。从名称包含子字符串“torque”的通道中读取数据。

datachanwildcard = mdfread("vehicledata.mf4", channel="*torque*")
datachanwildcard=2×1 cell array
    {751x2 timetable}
    {  0x0 timetable}

请注意,索引 2 处的时间表为空。这是因为所有匹配“*torque*”的通道都存在于通道组 1 中。

datachanwildcard{1}
ans=751×2 timetable
      time      impellertorque    outputtorque
    ________    ______________    ____________
    0 sec           52.919           282.65   
    0.04 sec         101.4           532.63   
    0.08 sec        150.76           776.41   
    0.12 sec        193.42           973.15   
    0.16 sec        227.02           1117.6   
    0.2 sec         251.11           1212.8   
    0.24 sec        267.24           1264.3   
    0.28 sec        276.35           1271.2   
    0.32 sec        281.99           1259.5   
    0.36 sec        283.39             1229   
    0.4 sec         283.29           1193.4   
    0.44 sec        282.91           1156.6   
    0.48 sec        281.84           1112.8   
    0.52 sec        281.19           1073.1   
    0.56 sec        279.77           1032.9   
    0.6 sec         277.89           993.97   
      ⋮

使用表从通道读取数据

您可以使用 来过滤目标通道,然后在 mdfread 中使用获得的表来仅读取列出的通道。

首先,使用 mdfchannelinfo 找到与“*rpm”或“airflow”匹配的通道名称。

chaninfo = mdfchannelinfo("vehicledata.mf4", channel=["*rpm", "airflow"])
chaninfo=3×13 table
          name           groupnumber    groupnumsamples    groupacquisitionname                                   groupcomment                                    groupsourcename    groupsourcepath    displayname    unit      comment      extendednameprefix    sourcename     sourcepath 
    _________________    ___________    _______________    ____________________    ___________________________________________________________________________    _______________    _______________    ___________    ____    ___________    __________________    ___________    ___________
    "airflow"                 2              92033                      simulation of engine gas dynamics.                                                                 ""         g/s                        
    "enginerpm"               1                751                      simulation of an automatic transmission controller during passing maneuver.                        ""         rpm                        
    "transmissionrpm"         1                751                      simulation of an automatic transmission controller during passing maneuver.                        ""         rpm                        

通过将可选参数 channel 指定为 mdfchannelinfo 返回的表,使用 mdfread 函数。这将从 chaninfo 表中列出的三个通道中一次性读取数据。

datachantable = mdfread("vehicledata.mf4", channel=chaninfo)
datachantable=2×1 cell array
    {  751x2 timetable}
    {92033x1 timetable}
datachantable{1}
ans=751×2 timetable
      time      enginerpm    transmissionrpm
    ________    _________    _______________
    0 sec          1000               0     
    0.04 sec     1383.3          13.593     
    0.08 sec     1685.4          35.847     
    0.12 sec     1907.2          65.768     
    0.16 sec       2062          101.53     
    0.2 sec      2161.2          141.45     
    0.24 sec     2221.4          183.86     
    0.28 sec     2257.2          227.25     
    0.32 sec     2278.7          270.52     
    0.36 sec     2292.4          313.08     
    0.4 sec      2305.1          354.43     
    0.44 sec     2317.4          394.58     
    0.48 sec     2330.5          433.27     
    0.52 sec     2344.5          470.53     
    0.56 sec     2359.1          506.43     
    0.6 sec      2376.4          540.92     
      ⋮
datachantable{2}
ans=92033×1 timetable
         time         airflow
    ______________    _______
    0 sec             17.294 
    0.00056199 sec    17.263 
    0.0033719 sec     17.112 
    0.01 sec          16.776 
    0.02 sec          16.316 
    0.03 sec          15.907 
    0.04 sec          15.546 
    0.05 sec          15.228 
    0.055328 sec      15.075 
    0.055328 sec      15.075 
    0.055328 sec      15.075 
    0.06 sec          14.949 
    0.064672 sec      14.832 
    0.07 sec          14.707 
    0.08 sec          14.497 
    0.09 sec          14.317 
      ⋮

读取索引范围内的数据

要仅读取指定索引范围内的数据子集,请指定选项 indexrange 以提供开始和结束索引。从两个通道组读取索引 101 和 105 之间的数据。

databyindex = mdfread("vehicledata.mf4", indexrange=[101, 105])
databyindex=2×1 cell array
    {5x8 timetable}
    {5x2 timetable}
databyindex{1}
ans=5×8 timetable
      time      enginerpm    brake    throttle    gear    impellertorque    outputtorque    transmissionrpm    vehiclespeed
    ________    _________    _____    ________    ____    ______________    ____________    _______________    ____________
    4 sec        3138.5        0       54.631      2          235.21           340.98           1964.5            43.427   
    4.04 sec     3151.6        0       54.577      2          234.57           340.09           1975.5            43.668   
    4.08 sec     3164.6        0       54.523      2          233.93            339.2           1986.3            43.908   
    4.12 sec     3177.6        0        54.47      2          233.29           338.31           1997.2            44.148   
    4.16 sec     3190.4        0       54.416      2          232.65           337.43             2008            44.387   
databyindex{2}
ans=5×2 timetable
      time      airflow    fuelrate
    ________    _______    ________
    0.89 sec    19.421      1.3439 
    0.9 sec     19.492      1.3486 
    0.91 sec    19.562      1.3532 
    0.92 sec    19.631      1.3577 
    0.93 sec    19.699      1.3622 

读取时间范围内的数据

要仅读取指定时间范围内的数据子集,请指定选项 timerange 以提供开始和结束时间。从两个通道组读取在 1.5 秒到 2 秒之间的数据。

databytime = mdfread("vehicledata.mf4", timerange=seconds([1.5, 2]))
databytime=2×1 cell array
    {13x8 timetable}
    {51x2 timetable}
databytime{1}
ans=13×8 timetable
      time      enginerpm    brake    throttle    gear    impellertorque    outputtorque    transmissionrpm    vehiclespeed
    ________    _________    _____    ________    ____    ______________    ____________    _______________    ____________
    1.52 sec       2969        0        57.96      1          240.51           574.51           1106.7            24.463   
    1.56 sec     3006.7        0       57.906      1           238.7            570.4           1125.9            24.887   
    1.6 sec      3044.4        0       57.852      1          237.26            567.2           1144.9            25.309   
    1.64 sec     3082.4        0       57.799      1          235.33           562.79           1163.8            25.727   
    1.68 sec     3120.3        0       57.745      1          233.87           559.47           1182.6            26.142   
    1.72 sec     3157.9        0       57.691      1          232.51            556.4           1201.3            26.555   
    1.76 sec       3195        0       57.638      1          231.18           553.41           1219.9            26.966   
    1.8 sec        3232        0       57.584      0          510.18           1093.3           1238.3            27.374   
    1.84 sec     2899.9        0        57.53      2          384.51            755.8           1268.9            28.048   
    1.88 sec     2742.1        0       57.477      2          327.29           607.68           1291.4            28.548   
    1.92 sec     2665.8        0       57.423      2             299           534.91           1310.4            28.967   
    1.96 sec     2631.3        0       57.369      2          284.28           496.35           1327.5            29.346   
    2 sec        2617.6        0       57.315      2          276.76           475.14           1343.7            29.702   
databytime{2}
ans=51×2 timetable
      time      airflow    fuelrate
    ________    _______    ________
    1.5 sec     22.414      1.5385 
    1.51 sec    22.446      1.5405 
    1.52 sec    22.477      1.5425 
    1.53 sec    22.508      1.5445 
    1.54 sec    22.539      1.5464 
    1.55 sec    22.569      1.5484 
    1.56 sec    22.598      1.5502 
    1.57 sec    22.628      1.5521 
    1.58 sec    22.656       1.554 
    1.59 sec    22.685      1.5558 
    1.6 sec     22.713      1.5576 
    1.61 sec    22.741      1.5593 
    1.62 sec    22.768      1.5611 
    1.63 sec    22.795      1.5628 
    1.64 sec    22.822      1.5645 
    1.65 sec    22.849      1.5662 
      ⋮

读取带绝对时间戳的数据

要返回基于 mdf 文件初始时间戳计算的 datetime 类型的绝对时间戳,请在调用 mdfread 时将选项 absolutetime 指定为 true

dataabstime = mdfread("vehicledata.mf4", absolutetime=true)
dataabstime=2×1 cell array
    {  751x8 timetable}
    {92033x2 timetable}
dataabstime{1}
ans=751×8 timetable
                time                 enginerpm    brake    throttle    gear    impellertorque    outputtorque    transmissionrpm    vehiclespeed
    _____________________________    _________    _____    ________    ____    ______________    ____________    _______________    ____________
    2022-01-20 01:22:34.000000000       1000        0           60      1          52.919           282.65                0                 0   
    2022-01-20 01:22:34.040000000     1383.3        0       59.946      1           101.4           532.63           13.593           0.30047   
    2022-01-20 01:22:34.080000000     1685.4        0       59.893      1          150.76           776.41           35.847            0.7924   
    2022-01-20 01:22:34.120000000     1907.2        0       59.839      1          193.42           973.15           65.768            1.4538   
    2022-01-20 01:22:34.160000000       2062        0       59.785      1          227.02           1117.6           101.53            2.2443   
    2022-01-20 01:22:34.200000000     2161.2        0       59.732      1          251.11           1212.8           141.45            3.1268   
    2022-01-20 01:22:34.240000000     2221.4        0       59.678      1          267.24           1264.3           183.86            4.0644   
    2022-01-20 01:22:34.280000000     2257.2        0       59.624      1          276.35           1271.2           227.25            5.0234   
    2022-01-20 01:22:34.320000000     2278.7        0        59.57      1          281.99           1259.5           270.52            5.9798   
    2022-01-20 01:22:34.360000000     2292.4        0       59.517      1          283.39             1229           313.08            6.9208   
    2022-01-20 01:22:34.400000000     2305.1        0       59.463      1          283.29           1193.4           354.43            7.8348   
    2022-01-20 01:22:34.440000000     2317.4        0       59.409      1          282.91           1156.6           394.58            8.7222   
    2022-01-20 01:22:34.480000000     2330.5        0       59.356      1          281.84           1112.8           433.27            9.5775   
    2022-01-20 01:22:34.520000000     2344.5        0       59.302      1          281.19           1073.1           470.53            10.401   
    2022-01-20 01:22:34.560000000     2359.1        0       59.248      1          279.77           1032.9           506.43            11.195   
    2022-01-20 01:22:34.600000000     2376.4        0       59.195      1          277.89           993.97           540.92            11.957   
      ⋮
dataabstime{2}
ans=92033×2 timetable
                time                 airflow    fuelrate
    _____________________________    _______    ________
    2022-01-20 01:22:34.000000000    17.294       1.209 
    2022-01-20 01:22:34.000561989    17.263       1.209 
    2022-01-20 01:22:34.003371932    17.112       1.209 
    2022-01-20 01:22:34.010000000    16.776      1.1729 
    2022-01-20 01:22:34.020000000    16.316      1.1409 
    2022-01-20 01:22:34.030000000    15.907      1.1124 
    2022-01-20 01:22:34.040000000    15.546      1.0873 
    2022-01-20 01:22:34.050000000    15.228      1.0652 
    2022-01-20 01:22:34.055327997    15.075      1.0652 
    2022-01-20 01:22:34.055327997    15.075      1.0652 
    2022-01-20 01:22:34.055327997    15.075      1.0652 
    2022-01-20 01:22:34.060000000    14.949      1.0458 
    2022-01-20 01:22:34.064672003    14.832      1.0458 
    2022-01-20 01:22:34.070000000    14.707      1.0289 
    2022-01-20 01:22:34.080000000    14.497      1.0143 
    2022-01-20 01:22:34.090000000    14.317      1.0019 
      ⋮
网站地图