curve fitting toolbox 产品信息 -凯发k8网页登录

 

使用回归、插值和平滑对数据进行曲线和曲面拟合

开始:

curve fitting

从 matlab 工作区导入数据并进行曲线和曲面拟合。执行线性和非线性回归和插值。

curve fitting

使用 curve fitting 或命令行拟合函数进行曲线拟合。

曲面拟合

使用 curve fitting或命令行拟合函数进行曲面拟合。

使用 curve fitting 进行曲面拟合。

线性和非线性回归

使用线性和非线性回归,将一个连续响应变量作为一个预测变量的函数进行建模。

线性拟合

通过选择标准回归模型或使用自定义方程来应用线性回归。所有这些标准回归模型都包含优化的求解器参数和起始条件,以提高拟合质量。

线性回归方法概述。

非线性拟合

使用指数模型、傅里叶级数模型、幂级数模型、高斯模型和标准模型应用非线性参数化回归。

使用自定义方程对生物制药数据进行曲面拟合

平滑和插值

使用插值法估算已知数据点之间的值,然后使用平滑样条和局部回归进行拟合以平滑数据。

插值

拟合插值曲线或曲面,并估算已知数据点之间的值。

比较线性插值模型。

研究燃油效率时模型和表数据之间的差异。

后处理

在拟合曲线或曲面后,使用后处理方法对拟合绘图。分析拟合是否准确、估计置信区间并计算积分和导数。

比较和评估拟合

创建多个拟合,比较图形和数值结果以及拟合优度统计量。使用验证数据调优拟合。

在 curve fitting 中创建多个拟合。

绘图

自定义绘图并执行附加分析,如离群值、残差、置信区间、积分和导数。

显示和自定义绘图。

样条

构造有数据或无数据样条。控制高级样条操作,包括断点/节点操作、优化节点放置以及数据点加权。

对数据进行样条拟合

对数据进行各种样条拟合,包括具有各种终止条件的三次样条和平滑样条,用于曲线、曲面和更高维对象。

对钛的测试数据进行样条拟合。

b 样条、有理样条和 nurbs

创建用于分析复杂曲面的 b 样条以及均匀和非均匀有理样条 (nurbs)。

三维样条。

网站地图