statistics and machine learning toolbox 快速入门 -凯发k8网页登录
statistics and machine learning toolbox™ 提供了用于描述数据、分析数据以及为数据建模的函数和 app。您可以使用描述性统计量、可视化和聚类进行探索性数据分析,对数据进行概率分布拟合,生成进行蒙特卡罗模拟的随机数,以及执行假设检验。回归和分类算法允许您使用分类和回归学习器以交互方式,或使用 automl 以编程方式从数据做出推断并构建预测模型。
对于多维数据分析和特征提取,工具箱提供主成分分析 (pca)、正则化、降维和特征选择方法,使您能够识别具有最佳预测能力的变量。
工具箱提供有监督、半监督和无监督的机器学习算法,包括支持向量机 (svm)、提升决策树、k-均值和其他聚类方法。您可以应用部分依赖图和 lime 等可解释性方法,并自动生成 c/c 代码用于嵌入式部署。许多工具箱算法可用于太大而无法放入内存的数据集。
教程
- machine learning in matlab
discover machine learning capabilities in matlab® for classification, regression, clustering, and deep learning, including apps for automated model training and code generation.
- train classification models in classification learner app
workflow for training, comparing and improving classification models, including automated, manual, and parallel training.
- train regression models in regression learner app
workflow for training, comparing and improving regression models, including automated, manual, and parallel training.
visually compare the empirical distribution of sample data with a specified distribution.
generate random samples from specified probability distributions, and displays display the samples as histograms.
understand the steps for supervised learning and the characteristics of nonparametric classification and regression functions.
address statistical modeling problems with active data collection.