plot results of local interpretable model-凯发k8网页登录
plot results of local interpretable model-agnostic explanations (lime)
since r2020b
syntax
description
visualizes the lime results in the f
= plot(results
)lime
object
results
. the function returns the figure
object
f
. use f
to query or modify of the figure after it is created.
the figure contains a horizontal bar graph that shows the coefficient values of a linear simple model or predictor importance values of a decision tree simple model, depending on the simple model in
results
(simplemodel
property ofresults
).the figure displays two predictions for the query point computed using the machine learning model and the simple model, respectively. these values correspond to the
blackboxfitted
property and thesimplemodelfitted
property ofresults
.
examples
explain prediction with decision tree simple model
train a classification model and create a lime
object that uses a decision tree simple model. when you create a lime
object, specify a query point and the number of important predictors so that the software generates samples of a synthetic data set and fits a simple model for the query point with important predictors. then display the estimated predictor importance in the simple model by using the object function plot
.
load the creditrating_historical
data set. the data set contains customer ids and their financial ratios, industry labels, and credit ratings.
tbl = readtable('creditrating_historical.dat');
display the first three rows of the table.
head(tbl,3)
id wc_ta re_ta ebit_ta mve_bvtd s_ta industry rating _____ _____ _____ _______ ________ _____ ________ ______ 62394 0.013 0.104 0.036 0.447 0.142 3 {'bb'} 48608 0.232 0.335 0.062 1.969 0.281 8 {'a' } 42444 0.311 0.367 0.074 1.935 0.366 1 {'a' }
create a table of predictor variables by removing the columns of customer ids and ratings from tbl
.
tblx = removevars(tbl,["id","rating"]);
train a blackbox model of credit ratings by using the fitcecoc
function.
blackbox = fitcecoc(tblx,tbl.rating,'categoricalpredictors','industry');
create a lime
object that explains the prediction for the last observation using a decision tree simple model. specify 'numimportantpredictors'
as six to find at most 6 important predictors. if you specify the 'querypoint'
and 'numimportantpredictors'
values when you create a lime
object, then the software generates samples of a synthetic data set and fits a simple interpretable model to the synthetic data set.
querypoint = tblx(end,:)
querypoint=1×6 table
wc_ta re_ta ebit_ta mve_bvtd s_ta industry
_____ _____ _______ ________ ____ ________
0.239 0.463 0.065 2.924 0.34 2
rng('default') % for reproducibility results = lime(blackbox,'querypoint',querypoint,'numimportantpredictors',6, ... 'simplemodeltype','tree')
results = lime with properties: blackboxmodel: [1x1 classificationecoc] datalocality: 'global' categoricalpredictors: 6 type: 'classification' x: [3932x6 table] querypoint: [1x6 table] numimportantpredictors: 6 numsyntheticdata: 5000 syntheticdata: [5000x6 table] fitted: {5000x1 cell} simplemodel: [1x1 classificationtree] importantpredictors: [2x1 double] blackboxfitted: {'aa'} simplemodelfitted: {'aa'}
plot the lime
object results
by using the object function plot
. to display an existing underscore in any predictor name, change the ticklabelinterpreter
value of the axes to 'none'
.
f = plot(results);
f.currentaxes.ticklabelinterpreter = 'none';
the plot displays two predictions for the query point, which correspond to the blackboxfitted property and the simplemodelfitted property of results
.
the horizontal bar graph shows the sorted predictor importance values. lime
finds the financial ratio variables mve_bvtd
and re_ta
as important predictors for the query point.
you can read the bar lengths by using data tips or . for example, you can find bar
objects by using the findobj
function and add labels to the ends of the bars by using the text
function.
b = findobj(f,'type','bar'); text(b.yendpoints 0.001,b.xendpoints,string(b.ydata))
alternatively, you can display the coefficient values in a table with the predictor variable names.
imp = b.ydata; flipud(array2table(imp', ... 'rownames',f.currentaxes.yticklabel,'variablenames',{'predictor importance'}))
ans=2×1 table
predictor importance
____________________
mve_bvtd 0.088412
re_ta 0.0018061
explain prediction with linear simple model
train a regression model and create a lime
object that uses a linear simple model. when you create a lime
object, if you do not specify a query point and the number of important predictors, then the software generates samples of a synthetic data set but does not fit a simple model. use the object function fit
to fit a simple model for a query point. then display the coefficients of the fitted linear simple model by using the object function plot
.
load the carbig
data set, which contains measurements of cars made in the 1970s and early 1980s.
load carbig
create a table containing the predictor variables acceleration
, cylinders
, and so on, as well as the response variable mpg
.
tbl = table(acceleration,cylinders,displacement,horsepower,model_year,weight,mpg);
removing missing values in a training set can help reduce memory consumption and speed up training for the fitrkernel
function. remove missing values in tbl
.
tbl = rmmissing(tbl);
create a table of predictor variables by removing the response variable from tbl
.
tblx = removevars(tbl,'mpg');
train a blackbox model of mpg
by using the function.
rng('default') % for reproducibility mdl = fitrkernel(tblx,tbl.mpg,'categoricalpredictors',[2 5]);
create a lime
object. specify a predictor data set because mdl
does not contain predictor data.
results = lime(mdl,tblx)
results = lime with properties: blackboxmodel: [1x1 regressionkernel] datalocality: 'global' categoricalpredictors: [2 5] type: 'regression' x: [392x6 table] querypoint: [] numimportantpredictors: [] numsyntheticdata: 5000 syntheticdata: [5000x6 table] fitted: [5000x1 double] simplemodel: [] importantpredictors: [] blackboxfitted: [] simplemodelfitted: []
results
contains the generated synthetic data set. the simplemodel
property is empty ([]
).
fit a linear simple model for the first observation in tblx
. specify the number of important predictors to find as 3.
querypoint = tblx(1,:)
querypoint=1×6 table
acceleration cylinders displacement horsepower model_year weight
____________ _________ ____________ __________ __________ ______
12 8 307 130 70 3504
results = fit(results,querypoint,3);
plot the lime
object results
by using the object function plot
. to display an existing underscore in any predictor name, change the ticklabelinterpreter
value of the axes to 'none'
.
f = plot(results);
f.currentaxes.ticklabelinterpreter = 'none';
the plot displays two predictions for the query point, which correspond to the blackboxfitted property and the simplemodelfitted property of results
.
the horizontal bar graph shows the coefficient values of the simple model, sorted by their absolute values. lime finds horsepower
, model_year
, and cylinders
as important predictors for the query point.
model_year
and cylinders
are categorical predictors that have multiple categories. for a linear simple model, the software creates one less dummy variable than the number of categories for each categorical predictor. the bar graph displays only the most important dummy variable. you can check the coefficients of the other dummy variables using the simplemodel
property of results
. display the sorted coefficient values, including all categorical dummy variables.
[~,i] = sort(abs(results.simplemodel.beta),'descend'); table(results.simplemodel.expandedpredictornames(i)',results.simplemodel.beta(i), ... 'variablenames',{'expanded predictor name','coefficient'})
ans=17×2 table
expanded predictor name coefficient
__________________________ ___________
{'cylinders (5 vs. 8)' } 0.18008
{'model_year (74 vs. 70)'} -0.082499
{'model_year (80 vs. 70)'} -0.052277
{'model_year (81 vs. 70)'} 0.035987
{'model_year (82 vs. 70)'} -0.026442
{'model_year (71 vs. 70)'} 0.014736
{'model_year (76 vs. 70)'} 0.014723
{'model_year (75 vs. 70)'} 0.013979
{'model_year (77 vs. 70)'} 0.012762
{'model_year (78 vs. 70)'} 0.0089647
{'cylinders (6 vs. 8)' } -0.006972
{'model_year (79 vs. 70)'} -0.0058682
{'model_year (72 vs. 70)'} 0.005654
{'cylinders (3 vs. 8)' } -0.0023194
{'horsepower' } -0.00021074
{'cylinders (4 vs. 8)' } 0.00014773
⋮
input arguments
results
— lime results
lime
object
lime results, specified as a lime
object.
the simplemodel
property of results
must contain a fitted simple model.
references
[1] ribeiro, marco tulio, s. singh, and c. guestrin. "'why should i trust you?': explaining the predictions of any classifier." in proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 1135–44. san francisco, california: acm, 2016.
version history
introduced in r2020b
打开示例
您曾对此示例进行过修改。是否要打开带有您的编辑的示例?
matlab 命令
您点击的链接对应于以下 matlab 命令:
请在 matlab 命令行窗口中直接输入以执行命令。web 浏览器不支持 matlab 命令。
select a web site
choose a web site to get translated content where available and see local events and offers. based on your location, we recommend that you select: .
you can also select a web site from the following list:
how to get best site performance
select the china site (in chinese or english) for best site performance. other mathworks country sites are not optimized for visits from your location.
americas
- (español)
- (english)
- (english)
europe
- (english)
- (english)
- (deutsch)
- (español)
- (english)
- (français)
- (english)
- (italiano)
- (english)
- (english)
- (english)
- (deutsch)
- (english)
- (english)
- switzerland
- (english)
asia pacific
- (english)
- (english)
- (english)
- 中国
- (日本語)
- (한국어)