可解释性 -凯发k8网页登录
训练可解释的回归模型和解释复杂的回归模型
使用本质上可解释的回归模型,如线性模型、决策树和广义加性模型,或使用可解释性特征,来解释本质上不可解释的复杂回归模型。
要了解如何解释回归模型,请参阅 interpret machine learning models。
函数
对象
linear regression model | |
generalized additive model (gam) for regression | |
regressionlinear | linear regression model for high-dimensional data |
regressiontree | regression tree |
主题
模型解释
- interpret machine learning models
explain model predictions using thelime
andshapley
objects and theplotpartialdependence
function. - shapley values for machine learning model
compute shapley values for a machine learning model using interventional algorithm or conditional algorithm. - introduction to feature selection
learn about feature selection algorithms and explore the functions available for feature selection.
determine how features are used in trained regression models by using partial dependence plots.
可解释模型
- train linear regression model
train a linear regression model usingfitlm
to analyze in-memory data and out-of-memory data.
train a generalized additive model (gam) with optimal parameters, assess predictive performance, and interpret the trained model.- train regression trees using regression learner app
create and compare regression trees, and export trained models to make predictions for new data.