main content

支持向量机回归 -凯发k8网页登录

用于回归模型的支持向量机

为了提高在中低维数据集上的准确度,可以使用 fitrsvm 训练支持向量机 (svm) 模型。

为了减少在高维数据集上的计算时间,可以使用 fitrlinear 高效地训练线性回归模型,例如线性 svm 模型。

app

使用有监督机器学习训练回归模型来预测数据

模块

使用支持向量机 (svm) 回归模型预测响应
使用线性回归模型预测响应

函数

fitrsvmfit a support vector machine regression model
predict responses using support vector machine regression model
fitrlinearfit linear regression model to high-dimensional data
predict response of linear regression model
fit gaussian kernel regression model using random feature expansion
predict responses for gaussian kernel regression model
cross-validated support vector machine regression model
partialdependencecompute partial dependence
plotpartialdependencecreate partial dependence plot (pdp) and individual conditional expectation (ice) plots
limelocal interpretable model-agnostic explanations (lime)
shapleyshapley values

对象

regressionsvmsupport vector machine regression model
compactregressionsvmcompact support vector machine regression model
regressionlinearlinear regression model for high-dimensional data
cross-validated linear regression model for high-dimensional data
gaussian kernel regression model using random feature expansion
cross-validated kernel model for regression

主题


  • understand the mathematical formulation of linear and nonlinear svm regression problems and solver algorithms.


  • create and compare kernel approximation models, and export trained models to make predictions for new data.

  • predict responses using regressionsvm predict block

    train a support vector machine (svm) regression model using the regression learner app, and then use the regressionsvm predict block for response prediction.


  • this example shows how to use the regressionlinear predict block for response prediction in simulink®.

网站地图