加快统计计算速度 -凯发k8网页登录
statistics and machine learning toolbox™ 允许您使用并行计算来加快某些统计计算的速度。在并行计算中,一个 matlab® 客户端会话将代码段分配给多个工作进程进行独立处理,然后将各个结果合并起来完成计算。使用并行计算,可以加快重抽样方法(例如自助法和 jackknife 法、决策树提升法和装袋法、交叉验证法、聚类算法等)的速度。有关 statistics and machine learning toolbox 中支持并行计算的完整函数列表,请参阅函数列表(自动并行支持)。
有些函数接受 gpuarray
(parallel computing toolbox) 输入参数,因此您可以通过在图形处理单元 (gpu) 上运行来加快代码执行速度。有关接受 gpu 数组的 statistics and machine learning toolbox 函数的完整列表,请参阅函数列表(gpu 数组)。
您必须拥有 parallel computing toolbox™ 许可证才能使用并行计算功能和 gpu 数组。
主题
- quick start parallel computing for statistics and machine learning toolbox
get started with parallel statistical computing.
- concepts of parallel computing in statistics and machine learning toolbox
overview of the ideas in parallel statistical computations.
- when to run statistical functions in parallel
deciding when to call functions in parallel.
- working with parfor
parallel computing using
parfor
with statistics functions. - implement jackknife using parallel computing
speed up the jackknife using parallel computing.
- implement cross-validation using parallel computing
speed up cross-validation using parallel computing.
- implement bootstrap using parallel computing
speed up the bootstrap using parallel computing.
- reproducibility in parallel statistical computations
how to obtain identical results from repeated parallel computations.
- analyze and model data on gpu
accelerate your code by using gpu array input arguments.
- accelerate linear model fitting on gpu
this example shows how you can accelerate regression model fitting by running functions on a graphical processing unit (gpu).