deterministic transition function approximator object for neural network-凯发k8网页登录
deterministic transition function approximator object for neural network-based environment
since r2022a
description
when creating a neural network-based environment using rlneuralnetworkenvironment
, you can specify deterministic transition function
approximators using rlcontinuousdeterministictransitionfunction
objects.
a transition function approximator object uses a deep neural network to predict the next observations based on the current observations and actions.
to specify stochastic transition function approximators, use rlcontinuousgaussiantransitionfunction
objects.
creation
syntax
description
creates a deterministic transition function approximator object using the deep neural
network tsnfcnappx
= rlcontinuousdeterministictransitionfunction(net
,observationinfo
,actioninfo
,name=value
)net
and sets the observationinfo
and
actioninfo
properties.
when creating a deterministic transition function approximator you must specify the
names of the deep neural network inputs and outputs using the
observationinputnames
, actioninputnames
, and
nextobservationoutputnames
name-value pair arguments.
you can also specify the predictdiff
and
usedevice
properties using optional name-value pair arguments. for
example, to use a gpu for prediction, specify usedevice="gpu"
.
input arguments
properties
object functions
rlneuralnetworkenvironment | environment model with deep neural network transition models |
examples
version history
introduced in r2022a