stochastic gaussian transition function approximator object for neural network-凯发k8网页登录
stochastic gaussian transition function approximator object for neural network-based environment
since r2022a
description
when creating a neural network-based environment using rlneuralnetworkenvironment
, you can specify stochastic transition function
approximators using rlcontinuousdeterministictransitionfunction
objects.
a transition function approximator object uses a deep neural network as internal approximation model to predict the next observations based on the current observations and actions.
to specify deterministic transition function approximators, use rlcontinuousgaussiantransitionfunction
objects.
creation
syntax
description
creates the stochastic transition function approximator object
tsnfcnappx
= rlcontinuousgaussiantransitionfunction(net
,observationinfo
,actioninfo
,name=value
)tsnfcnappx
using the deep neural network net
and sets the observationinfo
and actioninfo
properties.
when creating a stochastic transition function approximator, you must specify the
names of the deep neural network inputs and outputs using the
observationinputnames
, actioninputnames
,
nextobservationmeanoutputnames
, and
nextobservationstandarddeviationoutputnames
name-value pair
arguments.
you can also specify the predictdiff
and
usedevice
properties using optional name-value pair arguments. for
example, to use a gpu for prediction, specify usedevice="gpu"
.
input arguments
properties
object functions
rlneuralnetworkenvironment | environment model with deep neural network transition models |
examples
version history
introduced in r2022a