solving data management and analysis challenges using matlab and statistics toolbox -凯发k8网页登录
engineers and scientists often need to invest significant amounts of time and effort analyzing large data sets. this task becomes even more complicated if sensor failures or drop outs result in bad or missing data points. data management techniques can help mitigate these types of problems.
an example application will demonstrate how matlab and statistics add-on products can be used to organize information, compensate for missing data, and enhance data analysis.
this presentation will show you how to:
·use dataset arrays to organize and analyze heterogeneous data/metadata
·use categorical arrays to work with data that take on values from a finite set of levels (or categories)
·use techniques such as filtering, mean/median replacement, interpolation, and regression substitution to remove missing data
·perform exploratory data analysis using interaction visualization tools
·capture and model trends observed in the data
previous knowledge of matlab is not required to attend this webinar.
recorded: 14 oct 2008
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 mathworks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- (español)
- (english)
- (english)
欧洲
- (english)
- (english)
- (deutsch)
- (español)
- (english)
- (français)
- (english)
- (italiano)
- (english)
- (english)
- (english)
- (deutsch)
- (english)
- (english)
- switzerland
- (english)
亚太
- (english)
- (english)
- (english)
- 中国
- (日本語)
- (한국어)