main content

二次规划和锥规划 -凯发k8网页登录

求解具有二次目标和线性约束或锥约束的问题

在开始求解优化问题之前,您必须选择合适的方法:基于问题或基于求解器。有关详细信息,请参阅首先选择基于问题或基于求解器的方法

对于基于问题的方法,请创建问题变量,然后用这些符号变量表示目标函数和约束。有关基于问题的求解步骤,请参阅。要求解生成的问题,请使用 。

有关基于求解器的求解步骤,包括定义目标函数和约束,以及选择合适的求解器,请参阅基于求解器的优化问题设置。要求解生成的问题,请使用 或 。

函数

计算优化表达式
一个点处的约束违反度
创建优化问题
创建优化变量
求解优化问题或方程问题
second-order cone programming solver
infinite bound support for code generation
create warm start object
二次规划
create second-order cone constraint

实时编辑器任务

优化在实时编辑器中优化或求解方程

对象

second-order cone constraint object

主题

基于问题的二次规划


  • shows how to solve a problem-based quadratic programming problem with bound constraints using different algorithms.

  • shows how to solve a large sparse quadratic program using the problem-based approach.

  • example showing large-scale problem-based quadratic programming.

  • 说明关于基本投资组合模型的基于问题的二次规划的示例。

  • this example shows three techniques of asset diversification in a portfolio using optimization functions.

基于求解器的二次规划


  • example of quadratic programming with bound constraints and various options.

  • this example shows the benefit of the active-set algorithm on problems with many linear constraints.

  • shows that warm start can be effective in a large quadratic program.

  • describes how best to use warm start for speeding repeated solutions.

  • example showing how to save memory in a structured quadratic program.

  • example showing how to save memory in a quadratic program by using a sparse quadratic matrix.

  • example showing solver-based large-scale quadratic programming.

  • example showing solver-based quadratic programming on a basic portfolio model.

基于问题的二阶锥规划

基于求解器的二阶锥规划


  • solve a mechanical mass-spring problem using cone programming.

  • convert quadratic constraints into coneprog form.

  • convert a quadratic programming problem to a second-order cone problem.

代码生成


  • 为二次优化生成 c 代码的前提条件。

  • learn the basics of code generation for the quadprog optimization solver.

  • describes how best to use warm start for speeding repeated solutions.
  • optimization code generation for real-time applications
    explore techniques for handling real-time requirements in generated code.

基于问题的算法


  • 了解优化函数和对象如何求解优化问题。

  • requirements for solve to use coneprog for problem solution.

  • explore the supported mathematical and indexing operations for optimization variables and expressions.

算法和选项

网站地图