main content

信号处理 -凯发k8网页登录

对信号处理系统进行分析、设计和仿真

mathworks® 产品为音频、深度学习和信号处理应用提供工作流。您可以结合基于语言的编程和 simulink® 模块图来预处理、可视化和分析时间序列,开发和调试算法,设计和应用滤波器,以及对系统进行建模和测试。使用 matlab® coder™ 和 gpu coder™ 将您的凯发官网入口首页的解决方案部署到硬件上。

主题

滤波

  • 数字滤波实践介绍 (signal processing toolbox)
    设计、分析和应用数字滤波器,以消除信号中不需要的内容,而不会使数据失真。
  • multirate filtering in matlab and simulink (dsp system toolbox)
    perform multirate filtering using rate conversion objects and blocks.
  • (dsp system toolbox)
    process signals using frame-based processing and compare the performance using simulink profiler.

测量

可视化

频谱、时频和多分辨率分析

  • time-frequency gallery (signal processing toolbox)
    examine the features and limitations of the time-frequency analysis functions provided by signal processing toolbox™.
  • (wavelet toolbox)
    perform and interpret time-frequency analysis of signals using the continuous wavelet transform.
  • estimate the power spectrum in simulink (dsp system toolbox)
    compute the power spectrum using the spectrum analyzer and the spectrum estimator blocks.

机器学习和深度学习

  • (wavelet toolbox)
    learn how to develop an alert system for predictive maintenance using wavelet scattering and deep learning.
  • deep learning for audio applications (audio toolbox)
    learn common tools and workflows to apply deep learning to audio applications.
  • (dsp system toolbox)
    use the wavelet scattering block and a pretrained deep learning network to classify audio signals.

建模和仿真

代码生成和算法加速

  • (wavelet toolbox)
    create and deploy a simulink model for signal classification using wavelet-based features.
  • (audio toolbox)
    generate code to spot keywords using a bidirectional long short-term memory (bilstm) network and mel frequency cepstral coefficient (mfcc) feature extraction.
  • (signal processing toolbox)
    generate a mex function and a standalone executable to perform waveform segmentation on a raspberry pi®.

相关信息




网站地图