雷达 -凯发k8网页登录
分析、设计和仿真雷达系统
您可以使用 mathworks® 产品来设计、仿真、分析和测试多功能雷达系统,将其作为实现的起点。将 radar toolbox 与其他产品相结合,研究在物理环境中移动和运行的平台中的机载、陆基、舰载与汽车雷达系统及场景。
根据指定的需求和性能指标对雷达系统应用权衡分析
在不同抽象层次上对发射机、接收机、传播信道、目标、干扰器和杂波进行建模
对有源和无源相控阵进行仿真以执行波束成形和信号处理算法设计
使用各种坐标系和地图来设计和仿真自主系统场景,包括平台、轨迹、路径、环境和传感器
将雷达测量结果与来自其他真实传感器和传感器阵列的数据进行融合
编译和处理检测与跟踪统计数据,并使用多目标跟踪器和估计滤波器来评估架构
使用 deep learning toolbox™ 将 ai 集成到您的设计和模型中。使用 matlab® coder™,您可以根据开发的信号处理算法生成代码,并将凯发官网入口首页的解决方案部署到硬件上。
适用产品:雷达
主题
建模和仿真
- airborne sar system design (radar toolbox)
design an x-band synthetic aperture radar (sar) sensor parameters. - (radar toolbox)
model the hardware, signal processing, and propagation environment of an automotive radar.
地图构建
- (mapping toolbox)
create a map using multiple data sets with coordinates in geographic and projected coordinate reference systems. - export images and raster grids to geotiff (mapping toolbox)
write data referenced to standard geographic and projected coordinate systems to geotiff files.
态势感知和状态估计
- extended object tracking of highway vehicles with radar and camera (sensor fusion and tracking toolbox)
track highway vehicles around an ego vehicle as extended objects that span multiple sensor resolution cells. - visual-inertial odometry using synthetic data (sensor fusion and tracking toolbox)
estimate the pose (position and orientation) of a ground vehicle using an inertial measurement unit (imu) and a monocular camera.
目标跟踪和运动规划
- (sensor fusion and tracking toolbox)
dynamically plan the motion of an autonomous vehicle based on estimates of the surrounding environment. - (radar toolbox)
this example employs radar resource management to efficiently track multiple maneuvering targets. an interacting multiple model (imm) filter estimates when the target is maneuvering to optimize radar revisit times.
机器学习和深度学习
- label radar signals with signal labeler (radar toolbox)
label the time and frequency features of pulse radar signals with added noise. - (phased array system toolbox)
classify radar and communications waveforms using the wigner-ville distribution (wvd) and a deep convolutional neural network (cnn).
硬件部署
- (phased array system toolbox)
design a range-doppler response that is implementation-ready for a fpga and compare a simulation output of the model with a simulink® behavioral model. - (sensor fusion and tracking toolbox)
obtain data from an invensense mpu-9250 imu sensor, and to use the 6-axis and 9-axis fusion algorithms in the sensor data to compute orientation of the device.