图像处理和计算机视觉 -凯发k8网页登录
采集、处理和分析图像和视频以进行算法开发和系统设计
借助 mathworks® 的图像处理和计算机视觉产品,您可以执行端到端的处理工作流,从数据采集和预处理,到增强和分析,一直到部署到嵌入式视觉系统。
这些产品支持面向图像、视频、点云、激光雷达和高光谱数据的各种工作流。使用这些产品,您可以:
使用 app 以交互方式可视化、探查和处理数据。
用算法增强和分析数据。
使用深度学习执行语义分割、目标检测、分类和图像到图像的转换。
与硬件对接,用于图像采集、算法加速、桌面原型构建和嵌入式视觉系统部署。
适用产品:图像处理和计算机视觉
主题
预处理和标注数据
- choose an app to label ground truth data (computer vision toolbox)
decide which app to use to label ground truth data: image labeler, video labeler, ground truth labeler, lidar labeler, signal labeler, or medical image labeler. - preprocess data for domain-specific deep learning applications (deep learning toolbox)
perform deterministic or randomized data processing for domains such as image processing, object detection, semantic segmentation, signal and audio processing, and text analytics. - getting started with point clouds using deep learning (computer vision toolbox)
understand how to use point clouds for deep learning. - approaches to registering images (image processing toolbox)
choose from four approaches to image registration: the registration estimator app, intensity-based automatic image registration, control point registration, and automated feature matching.
检测目标和特征
- (computer vision toolbox)
object detection using deep learning neural networks. - local feature detection and extraction (computer vision toolbox)
learn the benefits and applications of local feature detection and extraction. - match and visualize corresponding features in point clouds (lidar toolbox)
this example shows how to match corresponding features between point clouds using thepcmatchfeatures
function and visualize them using thepcshowmatchedfeatures
function.
分割图像
- (computer vision toolbox)
segment objects by class using deep learning. - getting started with image segmenter (image processing toolbox)
segment an image using different techniques, refine and save the binary mask, and export the segmentation code by using the image segmenter app. - segment image and create mask using color thresholder (image processing toolbox)
segment an image based on color values and create a binary mask image using color thresholder.
增强图像
- get started with gans for image-to-image translation (image processing toolbox)
transfer styles and characteristics from one set of images to the scene content of other images by using generative adversarial networks (gans). - 对比度增强方法 (image processing toolbox)
使用强度值映射、直方图均衡化和对比度受限的自适应直方图均衡化来调整灰度和彩色图像的对比度。 - 去除噪声 (image processing toolbox)
使用平均值滤波、中位数滤波和基于图像局部方差的自适应滤波等方法来消除图像噪声。
执行同步定位与地图构建
- choose slam workflow based on sensor data (computer vision toolbox)
choose the right simultaneous localization and mapping (slam) workflow and find topics, examples, and supported features.
采集和标定数据
- get started with image acquisition explorer (image acquisition toolbox)
use the image acquisition explorer to preview, configure, acquire, and save image data. - using the single camera calibrator app (computer vision toolbox)
estimate camera intrinsics, extrinsics, and lens distortion parameters. - what is lidar-camera calibration? (lidar toolbox)
fuse lidar and camera data.
在硬件上部署
- 图像处理的代码生成 (image processing toolbox)
了解如何使用 matlab® coder™ 从 image processing toolbox™ 函数生成 c 代码。 - gpu code generation workflow (gpu coder)
design, implement, and verify generated cuda mex for acceleration and standalone cuda code for deployment.